Self‐Healing Superhydrophobic Surfaces: Self‐Healing Superhydrophobic Surfaces: Healing Principles and Applications (Adv. Mater. Interfaces 12/2021)
نویسندگان
چکیده
منابع مشابه
Superhydrophobic surfaces reduce drag
Rare and common The hot grains of tektite and obsidian that show up in HD 172555’s IR spectrum are small enough that the star’s radiation pressure would drive them away from their current 6-AU orbit within 0.1 million years. The SiO molecules would likely condense and reform minerals on the same time scale. Given that rocky planets take 100 My to form, catching a giant impact in HD172555, despi...
متن کاملMechanically durable superhydrophobic surfaces.
Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is p...
متن کاملDroplet behavior on superhydrophobic surfaces: Interfaces, interactions, and transport
Dash, Susmita. Ph.D., Purdue University, December 2014. Droplet Behavior on Superhydrophobic Surfaces: Interfaces, Interactions, and Transport. Major Professor: Suresh V. Garimella, School of Mechanical Engineering. The primary objective of the present work is to study droplet dynamics on smooth hydrophobic and textured superhydrophobic surfaces, and to understand the dependence of interfacial ...
متن کاملPancake bouncing on superhydrophobic surfaces
Engineering surfaces that promote rapid drop detachment1,2 is of importance to a wide range of applications including anti-icing3-5, dropwise condensation6, and self-cleaning7-9. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nano-textures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the s...
متن کاملLong-lived superhydrophobic colorful surfaces.
Rough structures created from bulk materials at the surface could have superior durability. Superhydrophobic colorful surfaces were fabricated through chemical etching of the fiber surfaces, followed by diffusion of fluoroalkylsilane into fibers. The obtained superhydrophobic textiles show strong durability against severe abrasion, long-time laundering, and boiling water.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials Interfaces
سال: 2021
ISSN: 2196-7350,2196-7350
DOI: 10.1002/admi.202170065